TRANSILON Conveyor and processing belts

Calculation methods – conveyor belts

The formulae, figures and recommendations in this brochure are state of the art and a result of our years of experience. The calculation results can however differ from our calculation programme B_Rex (free download on the internet under www.siegling.com). These differences are a result of the basically different approaches: whereas B_Rex is based on empirical measurements and requires a detailed description of the machine, the calculation methods here are based on general, simple physical formulae and derivations backed up by factors (c_2) that include a safety margin. In the majority of cases the safety margin used for calculation in this brochure will be larger than for the corresponding B_Rex calculation.

Content

Terminology	2
Unit goods conveying systems	3
Take-up range for load-dependent take-up systems	8
Bulk goods conveying systems	9
Calculation example Unit goods conveying systems	12

Further information on machine design can be found in our brochure no. 305 "Recommendations for machine design".

Terminology

L.		
atio		
	lo	
. <u>s</u>	р Д	.::
De	Sy	Un
-	_	
Force on each belt strand	F	N
Maximum belt pull (at drive drum)	F ₁	N
Minimum belt pull (at drive drum)	F ₂	N
Effective belt pull	F _U	N
Shaft load at drive drum	F _{WA}	N
Shaft load at end drum	F _{WU}	N
Motor power	PM	kW
Calculated power at drive drum	PΔ	kW
Belt pull at 1% elongation per unit of width	SD	N/mm
Drum/roller width	b	mm
Belt width	bo	mm
Geometric belt length	Lg	mm
Calculation constants	-3 C.,	-
Drum/roller diameter	d	mm
Drive drum diameter	d.	mm
Polling resistance of support rollers	f	_
Difference in drum radii	h	mm
Coefficient of friction with support rollors		
Coefficient of friction with accumulated goods	μ _R	-
Coefficient of friction with alcultulated goods	μ _{ST}	-
Coefficient of friction with skid plate	μ _T	-
Acceleration due to gravity	g	9,81m/s ²
Production tolerance	IOL	%
Upper support roller pitch	lo	mm
Lower support roller pitch	lu	mm
Iransition length	l _s	mm
Mass of material conveyed		
over whole conveying length (total load)	m	kg
Mass of belt	m _B	kg
Mass of all rotating drum/rollers, except drive drum	m _R	kg
Mass of conveyed goods on upper side (total load)	m ₁	kg
Mass of conveyed goods on return side (total load)	m ₂	kg
Mass of conveyed goods per m of conveying length on upper side	m'o	kg/m
Line load		
Mass of conveyed goods per m of conveying length on return side		
Line load	m'u	kg/m
Tension take-up range	Z	mm
Total tension take-up range	Х	mm
Height of lift	hτ	m
Conveyor length	ե	β
Belt speed	V	m/s
Belt sag	Vp	mm
Drum deflection	VT-	mm
Arc of contact at drive drum and idler	ß	0
Onening angle at drive drum	P V	0
Incline $(+)$ or decline $(-)$ angle of conveyor	a S	0
Flongation at fitting	c., 0	%
Drive efficiency	c n	/0
Density of material conveyed	1	
Density of matchat conveyed	Ps	Ng/111

Conveyor and processing belts

Unit goods conveying systems

SIEGLING

Conveyor and	processing	belts
--------------	------------	-------

Coefficients of friction µS (guidelines)		0, A0, E0, T, U0, P	NOVO		U1, V1, VH	UH, V2H, U2H, V5H, V10H
* accumulated goods	μT (skid plate) μR (rollers) μST (*)	0.33 0.033 0.33	0.33 0.033 0.33		0.5 0.033 0.5	0.5 0.033 0.5
Maximum belt pull F ₁	F ₁ = F _U . c ₁		[N]	F ₁ =	<u>P_M · η · c₁ · 100</u> v	0[N]
	With calculable effective pull F _U . If ca d p u			If eff calcu deter powe used	ective belt pull F_{t} lated, maximum mined from the i er P_{M} as per the g to select a belt ty	$_{J}$ cannot be belt pull F_1 can be installed motor iven formula and pe.
c ₁ constant (is valid for drive drum)	Transilon with underside	v3, e of A5,	V5, U2, E3	V1, V2H	U1, UH, U2H I, V5H	0, U0, NOVO, T, P

with underside of	A5, E3		V2H, V5H			T, P			
Arc of contact β	180°	210°	240°	180°	210°	240°	180°	210°	240°
smooth steel drum									
dry	1.5	1.4	1.3	1.8	1.6	1.5	2.1	1.9	1.7
wet	3.7	3.2	2.9	5.0	4.0	3.0	not red	commer	ndable
lagged drum									
dry	1.4	1.3	1.2	1.6	1.5	1.4	1.5	1.4	1.3
wet	1.8	1.6	1.5	3.7	3.2	2.9	2.1	1.9	1.7

c₂ constant Counter-checking the type selection

F_1	<	c
b ₀	-	²

Transilon Type	E 2/1	E 3/2	E 2/2 E 3/1 E 4/1	E 4/2 E 5/2	E 6/1	NOVO E 8/2 E10/M	E12/3 E12/2 E15/M	E18/3	E20/M	E30/3	E44/3
Comptant a	2	10	-	0	0	4.5	25	25	10	(0)	70
Constant C ₂	2	10	5	8	8	15	25	35	40	60	70

Note: With perforated belts the number of holes reducing the cross-section must be deducted from b_0 . In the case of extreme temperatures c_2 constants change. Please enquire.

Minimum drive drum diameter $\mathbf{d}_{\mathbf{A}}$

Conveyor and processing belts

 $d_{A} = \frac{F_{U} \cdot c_{3} \cdot 180}{b_{0} \cdot \beta}$

[mm]

Transilon with underside of	V3, V5, U2, A5, E3	V1, U1, UH	0, U0, NOVO, T, P
smooth steel drum			
dry	25	50	80
wet	50	not recommendable	not recommendable
lagged drum			
dry	25	30	30
wet	30	40	50

c₃ constant (is valid for drive drum)

 $P_{A} = \frac{F_{U} \cdot v}{1000}$

[kW]

$$P_M = \frac{P_A}{\eta}$$
 [kW] = next largest standard motor is chosen

Power P_A at drive drum

Motor power P_M required

Conveyor and processing belts

Take-up range for screw-operated take-up systems

The following factors must be taken into account when determining the tension take-up range:

- 1. The approximate amount of elongation ϵ of the belt resulting from belt load. For determination of ϵ see pages 7 and 8.
- 2. The production length tolerances of the belt (Tol).
- 3. Possible external influences, e.g. temperature, stop-and-go operation, which may necessitate a higher elongation (tension) than normal or justify the allowance of a tension take-up reserve.

Guidelines for shaft load at rest with force F

When assessing shaft loads please take into account the differing belt pulls in stationary and operational modes.

The minimum operational elongation at the fitting for a head drive is

$$\varepsilon \approx \frac{F_U/2 + 2 \cdot F_2}{2 \cdot SD \cdot b_0}$$

[%]

Generally, depending on the load, an elongation at fitting in the range of approx. 0.1 - 1% is adequate; a tension take-up range x of 1% of the belt length is therefore sufficient.

Guidelines for elongation at fitting $\boldsymbol{\epsilon}$ with return-side drives 1/3 IT FU LIN F return-side drive is 52 FWALE 2F F_{W3} **K** with head drive **K** with return-side drive **K** with trail drive 0.75 0.62 0.25 1/3 IT Heck IT Kopf Example snub roller $\beta = 15^{\circ}$ $F_{W3} = \sqrt{2 \cdot F_1^2 - 2 \cdot F_1^2 \cdot \cos \beta}$ [N] Example snub roller $\beta = 25^{\circ}$ $F_{W6} = \sqrt{2 \cdot F_2^2 - 2 \cdot F_2^2} \cdot \cos \beta$ [N] SIEGLING

Guidelines for elongation at fitting $\boldsymbol{\epsilon}$ with tail drives

The operational elongation at fitting for a head drive is

$$\varepsilon \approx \frac{F_U/2 + 2 \cdot F_2 + F_U}{2 \cdot SD \cdot b_0}$$
[%]

The operational elongation at fitting for a

$$\varepsilon \approx \frac{F_{U}(c_{1} - K)}{SD \cdot b_{o}}$$
 [%]

TRANSILON Conveyor and processing belts

Take-up range for load-dependent take-up systems

With gravity-operated take-up systems the tensioning weight must generate the force F_2 in order to achieve satisfactory grip by the belt on the drive drum (spring-loaded, pneumatic and hydraulic take-up devices operate in similar fashion).

The tensioning weight must be capable of moving freely. The take-up unit can only be installed after the drive unit. Such a design cannot be used with a reversible conveyor. The take-up range is a function of the effective pull, the required force F_2 , the belt length L_g , its delivery tolerance Tol, the tension reserve Z and the belt type.

$$F_{R} = 2 \cdot F_{2} - F_{TR}$$

Determination of F_R

[N]

Example for determining the tensioning weight $F_R[N]$ with a 180° arc of contact.

$$F_{\rm R} = 2 \cdot F_2 \cdot \cos \frac{\gamma}{2} - F_{\rm TR} \qquad [N]$$

Example for determining the tensioning weight F_R [N] with an angle γ as shown below.

 F_{TR} = weight of tension roller [N]

Conveyor and processing belts

Bulk goods conveying systems

Bulk goods	δ (ca.º)
Ash, dry	16
Ash, wet	18
Earth, moist	18 – 20
Grain, except oats	14
Lime, lumps	15
Potatoes	12
Gypsum, pulverized	23
Gypsum, broken	18
Wood, chips	22 – 24
Fertilizer, artificial	12 – 15
Flour	15 – 18

Bulk goods	δ (ca.º)
Salt, fine	15 – 18
Salt, rock	18 – 20
Loam, moist	18 – 20
Sand, dry, wet	16 – 22
Peat	16
Sugar, refined	20
Sugar, raw	15
Cement	15 – 20

Longitudinal angle of incline $\boldsymbol{\delta}$

Guidelines for maximum incline angles δ for various bulk goods.

The values are determined by the particle shape, size and mechanical properties of the material conveyed, irrespective of the surface material of the belt.

Goods	Bulk density ρ [10 ³ kg/m ³]
Ash, cold, dry	0.7
Earth, moist	1.5 – 1.9
Grain, except oats	0.7 – 0.85
Wood, hard	0.6 - 1.2
Wood, soft	0.4 - 0.6
Wood, chips	0.35
Charcoal	0.2
Pulses	0.85
Lime, lumps	1.0 - 1.4
Fertilizer, artificial	0.9 - 1.2
Potatoes	0.75
Salt, fine	1.2 - 1.3
Salt, rock	2.1
Gypsum, pulverize	ed 0.95 – 1.0

Goods	Bulk density ρ [10 ³ kg/m ³]			
Gypsum, broken	1.35			
Flour	0.5 - 0.6			
Clinker	1.2 – 1.5			
Loam, dry	1.5 – 1.6			
Loam, moist	1.8 - 2.0			
Sand, dry	1.3 -1.4			
Sand, wet	1.4 - 1.9			
Soap, flakes	0.15 – 0.35			
Slurry	1.0			
Peat	0.4 - 0.6			
Sugar, refined	0.8 - 0.9			
Sugar, raw	0.9 - 1.1			
Sugarcane	0.2 – 0.3			

Density ρ of certain bulk goods

b ₀	mm	400	500	650	800	1000	1200	1400
Angle of surcharge 0°		25	32	42	52	66	80	94
Angle of surcharge 10°		40	57	88	123	181	248	326

Volume flow for flat conveyors

The table shows the hourly volume flow (m^3/h) at a belt speed of v = 1 m/s for a flat, horizontal conveyor belt with 20 mm high T20 longitudinal profiles welded along both edges of the top face.

Conveyor and processing belts

Volume flow for troughed conveyors

Note: In practical operations the theoretical value established for the volume flow is seldom obtained since it applies only to belts running horizontally and loaded evenly. Uneven distribution of the goods plus changes in the nature of the goods may reduce the volume carried by as much as 30 %.

-								
b ₀	mm	400	500	650	800	1000	1200	1400
20° troughed								
Angle of surcharge 0°		21	36	67	105	173	253	355
Angle of surcharge 10°		36	60	110	172	281	412	572
30° troughed								
Angle of surcharge 0°		30	51	95	149	246	360	504
Angle of surcharge 10°		44	74	135	211	345	505	703

c .	COR	icta	nt
4	CUI	1310	

For belts on inclined conveyors the theoretical quantity carried has to be reduced by the c_6 constant depending on the angle of inclination δ .

Determination of the effective pull F_U

(-) increasing

(+) decreasing

c₄ constant

Coefficient of rolling resistance f for support rollers

Angle of inclination δ [°]	2	4	6	8	10	12
c ₆ constant	1.0	0.99	0.98	0.97	0.95	0.93
Angle of inclination δ [°]	14	16	18	20	22	
c ₆ constant	0.91	0.89	0.85	0.81	0.76	

 $F_{U} = g \cdot c_{4} \cdot f(m + m_{B} + m_{R}) \pm g \cdot m \cdot \sin \alpha$

[N]

plus peripheral forces from scrapers and cleaning devices

I _T [m]	25	50	75	100	150	200
C ₄	2	1.9	1.8	1.7	1.5	1.3

- f = 0.025 for roller bearings
- f = 0.050 for plain bearings
- For other calculations please refer to unit goods

Support roller pitch

Conveyor and processing belts

Support roller pitch is a function of the belt's effective pull and the combined masses of belt and goods. It is calculated according to the following equation If a max. belt sag of 1% is permitted, i.e. if $y_B = 0.01 \ l_o$ is used, then

Recommendations

 $l_o \max \le 2b_0$ $l_u \approx 2 - 3 l_o \max$

 $l_{o} = \sqrt{\frac{y_{B} \cdot 800 \cdot F}{m'_{o} + m'_{B}}}$ [mm] $l_{o} = \frac{8 \cdot F}{m'_{o} + m'_{B}}$ [mm]

- l_o = upper support roller pitch in mm
- $y_B = max. belt sag in mm$
- F = effective pull at appropriate point in N m'_o + m'_B = weight of conveyed goods plus belt in kg/m

Unit goods conveying systems

Conveyor belts are loaded with a wide variety of goods (objects, containers) which are then sent to the distribution centre. Horizontal configuration, skid plate support, return side drive as shown above, drive drum lagged, tension take-up, 14 support rollers. Proposed belt type: Transilon E8/2 U0/V5H black		
	End drums 1, 2, 6 Snub rollers 3, 7, 8 Drive drums 5 Support rollers 4, 9, et al. Tension roller 6.	$ \begin{array}{lll} \mbox{Conveying length} & \mbox{l_T} &= 50 \mbox{ m} \\ \mbox{Geom. belt length} & \mbox{L_g} &= 105000 \mbox{ mm} \\ \mbox{Belt width} & \mbox{b_0} &= 600 \mbox{ mm} \\ \mbox{Total load} & \mbox{m} &= 1200 \mbox{ kg} \\ \mbox{Arc of contact} & \mbox{β} &= 180^{\circ} \\ \mbox{v} &= ca. \ 0.8 \mbox{ m/s} \\ \mbox{Mass rollers} & \mbox{m_R} &= 570 \mbox{ kg} \\ \mbox{(all drums)} \\ \mbox{except drum 5)} \end{array} $
Effective pull F _U [N]	$F_{U} = \mu_{T} \cdot g\left(m + \frac{m_{B}}{2}\right) + \mu_{R} \cdot g\left(\frac{m_{B}}{2} + m_{R}\right)$	
	$F_{\rm U} = 0.33 \cdot 9.81 \left(1200 + \frac{157.5}{2} \right) + 0.033 \cdot F_{\rm U} \approx 4340 \text{N}$	9.81 (<u>157.5</u> + 570)
Maximum belt pull F ₁ [N]	$F_{U} = 4350 \text{ N}$ c ₁ = 1.6	$F_1 = F_U \cdot c_1$
		$F_1 = 4350 \cdot 1.6$
		F ₁ ≈6960 N
Counter-checking the type selection	$F_1 = 6960 \text{ N}$ $b_0 = 600 \text{ mm}$	$c_2 = \frac{F_1}{b_0}$
		$c_2 = \frac{6960}{600}$
		$c_2 = 11.6 \text{ N/mm} \le 15 \text{ N/mm}$ for E 8/2
		The selected belt type is correct.

Conveyor and processing belts

$F_{U} = 4340 \text{ N}$ $c_{3} = 30$ $b = 180^{\circ}$ $b_{0} = 600 \text{ mm}$	$d_{A} = \frac{F_{U} \cdot c_{3} \cdot 180^{\circ}}{b_{0} \cdot \beta}$ $d_{A} = \frac{4340 \cdot 30 \cdot 180^{\circ}}{600 \cdot 180^{\circ}}$ $d_{A} = 218 \text{ mm}$ $d_{A} \text{ 250 mm selected}$	[mm] [mm]	Minimum drive drum diameter
$F_{U} = 4350 \text{ N}$ $\nu = 0.8 \text{ m/s}$	$P_{A} = \frac{F_{U} \cdot v}{1000}$ $P_{A} = \frac{4350 \cdot 0.8}{1000}$ $P_{A} \approx 3.5 \text{ kW}$	[kW]	Power P _A at the drive drum
$P_A = 3.5 \text{ kW}$ $\eta = 0.8 \text{ (assumed)}$	$P_{M} = \frac{P_{A}}{\eta}$ $P_{M} = \frac{3.5}{0.8}$ $P_{M} \approx 4.4 \text{ kW}$ $P_{M} 5.5 \text{ kW and higher}$	[kW] [kW]	Motor power P _M required
$F_{U} = 4350 \text{ N}$ $c_{1} = 1.6$ K = 0.62 SD = 8 N/mm for E 8/2 $b_{0} = 600 \text{ mm}$	$\varepsilon = \frac{F_U (c_1 - K)}{SD \cdot b_0}$ $\varepsilon = \frac{4350 (1.6 - 0.62)}{8 \cdot 600}$ $\varepsilon \approx 0.9 \%$	[%]	Minimum elongation at fitting for return-side drive

TRANSILON Conveyor and processing belts

Shaft load (in operation) Drum 2 (end drum)	Simplified calculation assuming $\beta = 180^{\circ}$	$F_{W2} = 2 \cdot F_1$	
	F ₁ = 6960 N	$F_{W2} = 2 \cdot 6960 \text{ N}$ $F_{W2} \approx 13920 \text{ N}$	
Shaft load (in operation) Drum 1 (end drum)	$F_2 = F_1 - F_U$ $F_2 = 6960 - 4350$	$F_{W1} = 2 \cdot F_2$	
	F ₂ = 2610 N	$F_{W1} = 2 \cdot 2610 \text{ N}$ $F_{W1} \approx 5220 \text{ N}$	
Shaft load (in operation) Drum 5 (drive drum)	$F_1 = 6960 \text{ N}$ $F_2 = F_1 - F_U$	$F_{W5} = F_1 + F_2$	
	F ₂ = 6960 - 4350 F ₂ = 2610 N	F _{W5} = 6960 + 2610 F _{W5} ≈ 9570 N	
Shaft load (in operation) Drum 3 (snub roller)	The calculation of F_{W3} influenced by belt pull F_1 , proceeds as given in the equation on page 7.		
SIEGLING		14	

Conveyor and processing belts

When the conveyor is at rest, the forces in the upper and return strands are determined solely by the elongation at fitting ϵ . The force F in each strand is given by

Example for a drum where the arc of contact $\beta = 180^{\circ}$

(This force acts on drums 1, 5 and 6 because of their 180° arc of contact.)

Where $\beta \neq$ 180° the following applies in determining F_w

$$= \varepsilon [\%] \cdot SD \cdot b_0$$

F

$$F_{W} = 2 \cdot F$$

$$F_{W} = 2 \cdot 0.9 \cdot 8 \cdot 600$$

$$F_{W} \approx 8640 \text{ N}$$

$$F_{W} = \sqrt{F_{1}^{2} + F_{2}^{2} - 2 \cdot F_{1} \cdot F_{2} \cdot \cos \beta}$$
$$F_{W} = [N]$$

(where $F_1 = F_2$ can be used when the conveyor is at rest.)

[N]

In order to compare the differences between the stationary and operational modes, please look at the variations in shaft load at drum 1.

F_{W1} at rest = 8640 N F_{W1} operational = 5220 N

Note: Both modes must be taken into account when designing the conveyor.

Tension take-up range

Tol = $\pm 0.2 \%$ $\epsilon = 0.9 \%$ L _g = 105000 mm z = 200 mm	$X = \frac{\frac{2 \cdot \text{Tol} \cdot \text{Lg}}{100} + \frac{\varepsilon \cdot \text{Lg}}{100}}{2} + z$	[mm]
	$\frac{2 \cdot 0, 2 \cdot 105000}{100} + \frac{0, 9 \cdot 105000}{100}$	
	$X = \frac{100}{2} + 200$	[mm]
	X = 210 + 473 + 200	[mm]

X = 210 + 473 + 200

X ≈ 883 mm

Conveyor and processing belts

This paper was made from non-chlorine-bleached cellulose.

Reproduction of text or parts thereof only with our approval. Modifications reserved.

> Registered trademarks Siegling Extremultus Transilon ProLink

Because our products are used in so many applications and because of the individual factors involved, our operating instructions, details and information on the suitability and use of the products are only general guidelines and do not absolve the ordering party from carrying out checks and tests themselves. When we provide technical support on the application, the ordering party bears the risk of the machinery functioning properly.

Worldwide Siegling Service

The Siegling Group employs more than 1700 people worldwide. Siegling production facilities are located in eight countries.

Siegling has companies and agencies with stock and workshops in more than 50 countries. Siegling service centres provide qualified assistance at more than 300 locations throughout the world.

A member of the Forbo Group.

Siegling GmbH Postfach 5346 · D-30053 Hannover Tel +49 511 6704-0 · Fax 6704305

Internet E-Mail

www.siegling.com info@siegling.com